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Computer Program Descriptions

Waveguide Bend Spurious Mode Program

PURPOSE: To calculate the magnitude and phase of pro-
pagating modes in H-plane waveguide bends
using annular modal analysis [1]. This pro-
gram can be used for the design of waveguide
bends used in high powered multimode
microwave systems where it is necessary to
suppress spurious mode generation.

LANGUAGE: FORTRAN IV G Level.

AUTHORS: G. Govindarajan and E. Bahar, the Depart-
ment of Electrical Engineering, University of
Nebraska, Lincoln, NE 68588.

AVAILABILITY: ASIS/NAPS Document No. 03001 Available
from the authors at a cost of $35.00 for a period
of two years from the date of publication.

DESCRIPTION: The main program employs the standard
fourth-order Runge-Kutta method [2], to solve

a system of first-order coupled differential equations whth complex

coefficients. The dependent variables in these equations are the

annual mode amplitudes in waveguide bends [1].
The principal input parameters are the waveguide width 2h/A

and ~(~), the expression for the bend centerline. Auxiliary input
data include the derivatives q’(<), q“(<), and q“’(~). These are used
to calculate the radius of curvature R(<), its derivative, and the
mode coupling coefficients. The amplitude of the incident TEIO
mode at the input port is assumed to be unity.

The subroutines used include SPMN, MODEQ, HANK, and COLVER.

Subroutine SPMN is used to calculate the complex coupling
coefficients involving Bessel functions. When v. /z ~ B. /k, where

v. is the order and z = kR is the argument of the Bessel function,
~n is the isth mode propagation coefficient in rectangular wave-
guides, and k is the free-space wavenumber, the asymptotic ex-

pressions for the coupling coefficients are used [1].

Subroutine MODEQ is used to solve the modal equation for Vnas

a function of distance between the waveguide ports. The Newton

Raphson method which is used to solve the modal equation

involves differentiation of the Hankel function, with respect to

order. This differentiation is performed numerically instead of

using infinite series expansions (for efH\~)(z)/tfv. and dEf\~)(z)/dvn)

found in handbooks. For any waveguide width 2h/A, a set of

values for v. /kR is computed as a function of AfR for
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O < AfR < L/Rmin where Rmin is the minimum value of R con-

sidered. These values for v. /kR are stored for later use to evaluate

the complex coupling coefficients and to solve the coupled differ-

ential equations.

For large radii of curvature, we note that

Vn/Z a /?n/k - & = [1 – (ni/4h)2]l’2.

Subroutine HANK is used to evaluate the Hankel functions of

the first and second kind, lif$~)(z) and H&)(z) using subroutine

COLVER [3].

The main program calls subroutines SPMN and MODEQ which in

turn call subroutines COLVER and HANK. The main program and

all of the subroutines except COLVER employ double precision

complex arithmetic while COLVER employs single precision arith-

metic. A detailed discussion on the computational accuracy of the

COLVER subroutine is given elsewhere [3].

The computer time needed to execute the main program that

employs the Runge–Kutta method depends very much upon the

number of elementary segments into which the bend is divided.

This in turn is determined by the degree of accuracy specified. The

calculations in this program are accurate to three significant

figures. The storage required and the execution time for the main

program are also dependent on the number of significant propa-

gating inodes in the bend. For a waveguide with a sinusoidal

centerline,

q(t) = w/~~” sin (xWIW)

the number of elementary segments used depends on the pa-

rameter w/1, the distance between the waveguide ports.

For small w/1, more segments per wavelength are needed since

there is stronger coupling between the modes. For example, with

2h/A = 1.75 and w/2h = 8.0, the number of segments needed is 150

whereas for the same specified degree of accuracy, only 200 seg-

ments are needed when w/2h = 16.0 [4]. A typical run employing

150 segments and w/2h = 8.0, 2h/1 = 1.75 requires a storage of

100K and a running time of 67 s. These calculations were per-

formed on an IBM 360/65 computer at the University of

Nebraska Lincoln Computing Facility.
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